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ABSTRACT

In this paper we apply a sensitivity equation method to shape optimization problems.
An algorithm is developed and tested on a problem of designing optimal forebody simulators
for a 2D, inviscid supersonic flow. The algorithm uses a BFGS/Trust Region optimization
scheme with sensitivities computed by numerically approximating the linear partial differ-

ential equations that determine the flow sensitivities. Numerical examples are presented to
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1 Introduction

The development of practical computational methods for optimization based design and
control often relies on cascading simulation software into optimization algorithms. Black-box
methods are examples of this approach. Although the precise form of the overall “optimal
design” (OD) algorithm may change, there is an often unstated assumption that properly
combining the “best” simulation algorithm with the “best” optimization scheme will produce
a good OD algorithm. There are many examples to show that in general this assumption is
not valid. However, in many cases it is a valid assumption and often this approach is the
only practical way of attacking complex optimal design problems. If one uses this cascading
approach, then it is still important to carefully pass information between the simulation
and the optimizer. Typically, one uses a simulation code to produce a finite dimensional
model and this discrete model is then used to supply approximate function evaluations to
the optimization algorithm. Moreover, the approximate functions are then differentiated to
supply gradients needed by the optimizer. Although there are numerous variations on this
theme, they all may be formulated as “approximate-then-optimize” approaches. There are
other approaches that first formulate the problem as an infinite dimensional optimization
problem and then use numerical schemes to approximate the optimal design. All-at-once,
one-shot and adjoint methods are examples of this “optimize-then-approximate” approach.
Regardless of which approach one chooses, some type of approximation must be introduced
at some point in the design process.

The sensitivity equation (SE) method is an approach that views the simulation scheme
as a device to produce approximations of both the function and the sensitivities. The ba-
sic idea is to produce approximations of the infinite dimensional sensitivities and to pass
these “approximate derivatives” to the optimizer along with the approximate function eval-
nations. There are several theoretical and practical issues that need to be considered when
this approach is used. For example, there is no assurance that the SE method produces “con-
sistent derivatives.” This will depend on the particular numerical scheme nsed to discretize
the problem. However, the SE method allows one the option of using separate numerical
schemes for flow solves and sensitivities, so that consistent derivatives can be forced. We
shall not address these issues in this short paper. The goal here is to illustrate that a
SE based method can be nsed with standard optimization schemes to produce a practical
fast algorithm for optimal design. We concentrate on a particular application (the optimal
forebody design problem) and use a specific iterative solver for the flow equations (PARC).
Many flow solvers are iterative and for these types of codes, the SE method has perhaps the

maximum potential for improving speed and accuracy.



In the next section we describe the forebody design problem and formulate the optimal
design problem. In Sections 3 and 4 we review the derivation of the sensitivity equations
and in Section 5 we discuss modifications to an existing simulation code that are needed in
order to use that code for computing sensitivities. In Section 6, we present numerical results
for the optimal design problem and Section 7 contains conclusions and suggestions for future

work.

2 Optimal Design of a Forebody Simulator

This problem is a 2D version of the problem described in [1,4,8] . The Arnold Engineering
Development Center (AEDC) is developing a free-jet test facility for full-scale testing of
engines in various free flight conditions. Although the test cells are large enough to house
the jet engines, they are too small to contain the full airplane forebody and engine. Thus,
the effect of the forward fuselage on the engine inlet flow conditions must be “simulated.”
One approach to solving this problem is to replace the actual forebody by a smaller object,
called a “forebody simulator” (FBS), and determine the shape of the FBS that produces the
best flow match at the engine inlet. The 2D version of this problem is illustrated in Figure
2.1 (see [1],[4], [8] and [9]).

The underlying mathematical model is based on conservation laws for mass, momentum

and energy. For inviscid flow, we have that
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The velocity components © and v, the pressure P, the temperature T', and the Mach number

M are related to the conservation variables, i.e., the components of the vector (), by
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At the inflow boundary, we want to simulate a free-jet, so that we specify the total

pressure g, the total temperature Ty and the Mach number M. We also set v = 0 at the



inflow boundary. If u;, Pr and T} denote the inflow values of the x-component of the velocity,

the pressure and the temperature, these may be recovered from Fo, To and My by
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The components of Q) at the inflow may then be determined from (4) through the relations
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The forebody is a solid surface, so that the normal component of the velocity vanishes,
1e.,

un + v, =0 on the forebody, (6)

where 5; and 7, are the components of the unit normal vector to the boundary. Note that
we impose (6) on the velocity components u and v, and not on the momentum components
m and n. Insofar as the state is concerned, it is clear that it does not make any difference
whether (6) is imposed on m and 7 or on u and v, since m = pu and n = pv and p £ 0. It
can be shown that it does not make any difference to the sensitivities as well,

Assume that at = 3 the desired steady state flow Q= Q(y) is given as data on the line

(called the Inlet Reference Plane)
IRP = {(z,y)|r = B,0 <y < 6}

Also, we assume here that the inflow (total) Mach number My can be used as a design
(control) variable along with the shape of the forebody. Let the forebody be determined by
the curve I' = T(x), o < 2 < 3 and let p = (Mp,T(-)). The problem can be stated as the
following optimization problem:

Problem FBS. Given data Q = Q(y) on the TRP, find the parameters p* = (Mg, T*(+))
such that the functional

T0) =3 [ 1QulBry)~ QW) IP dy @

o

o |

——

is minimized, where Qo (, %) = Qu(x, ¥y, p) is the solution to the steady state Euler equations

d 0
GQ,p)==—FM+—F=0 8
(@,p) 91 + oy (8)
In the FBS design problem, the data Q) is generated both experimentally and numerically.

In particular, the full airplane forebody (which is longer and larger than the desired FBS) is

nsed to generate the data. Since the FBS is “constrained” to be shorter and smaller, we shall
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consider the optimization problem illustrated in Figure 2.2 below. The data Q is generated
by solving (1)-(6) for the long forebody in Figure 2.2-(a) and the problem is to find p* to
minimize J where the shortened FBS is constrained to be one half the length of the “real
forebody.” This problem provides a realistic test of the optimal design algorithm in that the
data can not be fitted exactly. Also, we note that we have a problem with shocks in the flow
field. As shown in [2], optimization of flows with shocks can be difficult and requires some
understanding of the impact that shocks have on the smoothness of the cost functional.
Clearly the statement of the problem is not complete. For example, one should carefully
specify the set of admissible curves I'(-) and questions remain about existence, uniqueness
and integrability of “the” solution Q... We will not address these issues in this short paper.

Most optimization based design methods require the computation of the derivatives

a
ap

veloped to approximate the sensitivities numerically (see [7], [8], [10] and [11]). A common

Qo (z,y,p). These derivatives are called sensitivities and various schemes have been de-

approach is to use finite differences. In particular, the steady state equation (8) is solved

for p and again for § + Ap and then %Qoo(.r,y,i)) is approximated by Q""(T’y’HAA”g_Q""(I'y";).

This method is often costly and can introduce large errors. Another approach is to first

derive an equation (the sensitivity equation) for %Qoo(x,y,p) and then numerically solve
this equation. We shall illustrate this approach for the forebody design problem. In the next
two sections we derive the sensitivity equations. Although these derivations may be found

in [3] we repeat them here for completeness.

3 Sensitivities with Respect to the Inflow Mach Num-
ber

First, we consider the design parameter MZ. We will derive equations for the sensitivity

2 'DI
=gl | ©
E’f
Where , dp ,  Om , on , oF
p= T m = 8/\4{3’" n' = OTI(f and E = G (10)

The differential equation system (1) has no explicit dependence on the design parameter
Mg, so that equations for the components of @' are easily determined by formally differen-
tiating (1) with respect to M§. The result is the system

o’ N oF]  JOF, _
ot dzx Ay

0, (11)



where

m’ n'
. mu +m'u+ P’ . nu' + n'u 5
Fr= mv’ + m'v and £y = nv' 4+ n'v + P’ ) (l~)
(E+ P)u + (E'+ P)u (E+ P+ (E"+ P
and where,
du , Jdv , oP JaT
‘= == = d T'=+0, 13
“Eoaomr o U T oME amz " M3 (13)

and where, through (3), the sensitivities (10) and (13) are related by

[ . 1 . .
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Note that (11) is of the same form as (1), with a different flux vector. In particular, (11)
is in conservation form. As a result of the fact that (11) is linear in the primed variables,
and that by (14) u/, v' and P’ are linear in the components of Q’, (11) is a linear system in
the sensitivity (9), i.e., in the components of Q.

Now, we need to discuss the boundary conditions for Q'. Except for the inflow conditions,
all boundary conditions are independent of the design parameter M¢. Thus, the latter may
be differentiated with respect to M2 to obtain boundary conditions for the sensitivities. For

example, at the forebody where (6) holds, we simply would have that
w'm +v'n =0 on the forebody. (15)

Similar operations yield boundary conditions for the sensitivities along symmetry lines, other
solid surfaces and at the outflow boundary. Note that if instead of (6), one interprets the no
penetration condition as one on the momentum, i.e., mn +nn, = 0 on the forebody, then

instead of (15) we would have that
m'm +n'n =0 on the forebody (16)
which is seemingly different from (15). However, (6) and (14) can be used to show that
m'm + 0’y = p(u'nn + v'n2) + p'(um +vmz) = p(u'p + o) (17)

so that, since p # 0, (15) and (16) are identical.
The inflow boundary conditions for the sensitivities may be determined by differentiating

4) and (5) with respect to the design parameter M§. Note that this parameter appears
gn p 0 1 Pl
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explicitly in the right-hand-sides of the equations in (4) and (5). Without difficulty, one
finds from (5) that

7 T '7Pl ' r_ /
Pir= ;1 T—fT» my = prup +wipy,
1 1 .
n;=0  and Ej=—P+ :Z’U?/”l + prusyy, (18)
');_
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(1+(y=nag). (19)
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4 Sensitivities with Respect to the Forebody Design
Parameters

We assume that the forebody is described in terms of a finite number of design parameters

which we denote by Py, k = 1,..., K, and that the forebody may be described by the relation
y=0(x; P, P, ..., Pr), alz<pj (20)

We express the dependence of the state variable () on the coordinates and the design
parameters by Q = Q(t,x,y; Mg, P1, Py, ... Pr). We have already seen what equations can
be used to determine the sensitivity of the state with respect to MZ, i.e., for Q'. We now
discuss what equations can be used to determine the sensitivities with respect to the forebody

design parameters P, k= 1,..., K, i.c., for

Pk
aQ my
=——= , 21
Qx P, ny (21)
Ly
where
dp am on oF
L= = —— = — = — k=1,... K. (2
Pk op my PR oy P, and & PTR L,...,K. (22)

System (1) has no explicit dependence on the design parameters Py, so that equations
for the components of Qi are easily determined by differentiating (1) with respect to P,
k=1,..., K. This produces the systems, k = 1,..., K, given by

a'Qk n (')IFM n O'sz
ot dx dy

=0, (23)
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and where,
du dv aP oT
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Moreover, by (3), the sensitivities (22) and (25) are related by

l m

, 1 . .
=== T Pe=(r-1) (B = 5o + ) = plae + vor))

1 n 1 E
Uk = <M — = Pk and T, =~(y—-1) (—Ek - =Pk = (uuy + vvk.)> , (26)
pp pp
for k=1,... K.

All boundary conditions except the one on the forebody also do not depend on the
forebody design parameters P, k = 1,..., K. For example, consider the inflow boundary

conditions (4)-(5). Differentiating these with respect to Py, k =1,..., K yields that
pri =mpg =ng = By =Ty = Py =uy =0 =0 (27)

at the inflow boundary. Now consider the boundary condition (6) on the forebody. We have

that on the forebody

3! O(D
L= 28
2 Jr (28)
Combining (6) and (28) we have that
0P
u(,)— —v=0 (29)
Jdx

along the forebody or, displaying the full functional dependence on the coordinates and

design parameters, we have at a point (z,y) on the forebody, and at any time ¢,

. L]
u(t,;r,y:(D(;E;Pl,P-z,...,PK);AIOZ,P“PZ,...,PK> %;(I;Pl,Pg,...,PK)
—v(t, e, y=®(x; P, Py, ..., Px); ME, P, Py, ..., Px) =0. 30
0

We can proceed to differentiate (30) with respect to any of the forebody design parameters

Pi, k=1,..., K. The result is that, along the forebody for k =1,... K,

u 0—(1)—17 = — gli 00 99 —12 ()—(I) + 9—1—7 oo (31)
“or T T \ay ) \opr ) \as ) T "ar \op ay ) \ar, )’ '
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where u, v and their derivatives are evaluated at the forebody (z,y = ®(z)).

If an iterative scheme is used to find a steady state solution of this system ((23), (27),
(31)), then we assume that present guesses for the state variables v and v and their deriva-
tives du/0y and Jv/dy and for the design parameters MZ and Py, k= 1,..., K, are known.
It follows that the right-hand-side of (31) is known as well and equation (31), the bound-
ary conditions along the forebody for the sensitivities with respect to the forebody design
parameters, is merely an inhomogeneous version of (29), the boundary condition along the
forebody for the state.

Let us now specialize to the type of forebodies considered by Huddleston, [8,9], i.e.,

"
@(.’L‘;P;,PZ,...,P]\') :ZquSk(;E), (3‘2)
where ¢p(2), k = 1,..., K, are prescribed functions, e.g., Bezier curves (see [6]). In this
case,
d<I> 9 (99 _ déi 5
= ¢i(2z) and P (0PL> . —(z), (33)
and .
oo dox
Ox ’;P dx ?) (34)

Clombining (31)-(34), one obtains that, at any point (z,®(x)) on the forebody and for each
k=1,...,K,

Er)nn () Erte) et s () w0

For forebodies of the type (32), (35) gives the boundary conditions along the forcbody for
the sensitivities with respect to the forebody design parameters Py, k = 1,..., K. It is now
clear that, given guesses for the state variables u and v and their derivatives Ju/dy and
dv/dy and for the design parameters M§ and Py, k = 1,..., K, then the right-hand-side of
(35) 1s known.

Consider now the problem of minimizing J(p) as defined above. Most optimization
algorithms use gradient information. In particular, if Py denotes one of the shape parameters,
then the derivative

J
Jd P

5 9 , .
T (p) :/a < [}me(ﬁ,y,i))] yQoo(Byy,9) — Qy) > dy (36)

may be required in the optimization loop. The sensitivity %Qm(r, y, p) satisfies the steady-
state version of the sensitivity equations (23). In practice one must construct approximations

'—) -~ . - . . . _ . .
0 Q‘TA_QDO(J?, y,p) and feed this information into the optimizer.

8



Assume that one has a particular simulation scheme (finite differences, finite elements,

etc.) to approximate the flow Qo (,y,p) on a given grid, 1.e.

le(mvy?i)) - Q(DO(I71/7]3) ('37)

as the “step size” h — 0. Given the design parameter p, one constructs a grid (depending
on p) and then computes Qu(x,y,p) = Qoo(x,y,p). This process may require some type of
iterative scheme. We will address this issue below. In theory, one could use the same grid and
computational scheme to approximate %Qw(;r,y,ﬁ) so that one generates “approximate
sensitivities”
d . d . ,
[a—ﬁ;Qm(xa%P)] . - a—Pka(Iayap) (38)

as b — 0. It is important to note that in general
9, 0
—oo"'a’~ ap 1431~3 39
2 Qu(il] # 5 @ut0.P) (39

i.e. this approach may not provide “consistent sensitivities”. However, some schemes do

provide consistent derivatives and even if (39) holds, the error

J 0
EDy = [O—P—kau,y,m] - Qo) (40)

h
may be sufficiently small so that the optimization algorithm converges. Trust region methods
are particularly well suited for problems of this type, where derivative information may con-
tain (small) errors. As we shall sec below, there are certain cases where [%Qm(;r, Y, f))}h can
be computed fast and accurately. Hence, the SE method provides estimates for sensitivities
that may prove “good enough” for optimization and yet relatively cheap to compute. A com-
parison of {:,,‘;—,ono(m,y,ﬁ)]h and various finite difference approximations of a—% [Qun(z,y, )]
may be found in [3].

It is important to note that the details of the computations needed to approximate a
sensitivity are not the central issue here. For example, the sensitivity equations (I1) and
(23) are viewed as independent partial differential equations that must be solved by “some”
numerical scheme. This scheme does not necessarily have to be the same scheme used to
solve the flow equation (1), although as we shall see below, there are cases where using the
same scheme is a useful approach.

Also, note that the sensitivity equations are derived for the problem formulated on the
“physical” domain. If one uses a computational method that maps the problem to a com-
putational domain (as does PARC), then the SE method does not require derivatives of
this mapping. Oune simply maps the sensitivity equation (including the necessary bound-

ary conditions), grids the computational domain, solves the resulting transformed equations
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and then maps back to the physical domain. If, on the other hand, one mapped the flow
equation (1) and derived a sensitivity equation in the computational domain, then to obtain
the correct sensitivities one would have to compute the mapping sensitivity. Therefore, 1t is
more efficient to derive the sensitivity equations in the physical domain.

Finally, we note that the SE method described here has one additional benefit. To com-
pute a sensitivity, say 5%—ka(-‘1‘, ¥, ), then one first selects the parameter value p, constricts
a computational grid and solves for [%Qw(r,y,i))] . There is no need to compute grid

h
sensitivities.

5 Computing Sensitivities using an Existing Code for
the State

Suppose one has available a code to compute the state variables, 1.e.; to find approximate
solutions of (1) along with boundary and initial conditions. In principle, it is an easy matter
to amend such a code so that it can also compute sensitivities.

First, let us compare (1) with (11). If one wishes to amend the existing code that can
handle (1) so that it can treat (11) as well, one has to change the definitions of the flux
functions from those given in (2) to those given in (12). Note that the solution for the state
1s needed in order to evaluate the flux functions of (12).

Next, note that (11) and (23) are identical differential equations. Thus, the changes
made to the code in order to treat (1) can also be used to treat (23). In fact, as long as the
differential equation and any other part of the problem specification do not explicitly depend
on the design parameters, the analogous relations will be the same for all the sensitivities.

The only changes that vary from one sensitivity calculation to another are those that
arise from conditions in which the design parameters appear explicitly. In our example, for
the sensitivity with respect to MZ, one must change the portion of the code that treats the
inflow conditions (4)-(5) so that it can instead treat (18)-(19). In the problem considered
here, the nature (i.e. what variables are specified) of the boundary conditions at the inflow,
and everywhere else, is not affected. Note that for the sensitivity with respect to M¢Z, the
boundary condition (15) on the forebody is the same as that for the state, given by (6).

For the sensitivities with respect to the forebody design parameters, the inflow boundary
conditions simplify to (27), i.e., they become homogeneous. The boundary condition at the
forebody is now given by (31) or (35). Ounce again, the nature of the boundary conditions
1s unchanged from that for the state and only the specified data is different. For the inflow
boundary conditions, we may still specify the same conditions for the sensitivities, but now

they would be homogeneous. The boundary conditions along the forebody change in that
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they become inhomogeneous, (compare (29) and (35)).

In summary, to change a code for the state so that it also handles the sensitivities, one
must redefine the flux functions in the differential equations, and the data in the boundary
conditions. The changes necessary in the code to account for any particular relation that
does not explicitly involve the design parameters are independent of which sensitivity one is
presently considering.

The previous remarks are concerned only with the changes one must effect in a state code
in order to handle the fact that one is discretizing a different problem when one considers the
sensitivities. We have seen that these changes are not major in nature. However, there are
additional changes that may be needed when one attempts to solve the discrete equations.
In the numerical results presented below we use the finite difference code “PARC” (see [4]
and [8]) to solve the state and sensitivity equations. However, the following comments apply
equally well to other CFD codes of this type.

Since we are interested in steady design problems, the time derivative in (1) is considered
only to provide a means for marching to a steady state. Now, suppose that at any stage of a
Gauss-Newton, or other iteration, we have used PARC to find an approximate steady state
solution of (1) plus boundary conditions. In order to do this, one has to solve a sequence of

linear algebraic systems of the type
(1+A1AQ) Q8 = () +AtBQY),  n=0,1,2,.., (41)

where the sequence is terminated when one is satisfied that a steady state has been reached
and where QEL”) denotes the discrete approximation to the state () at the time ¢ = nAt. We
denote this steady state solution for the approximation to the state by Q. One problem of
the type (41) is solved for every time step. In (41), the matrix A and vector B arise from
the spatial discretization of the fluxes and the boundary conditions. Both of these depend
on the state at the previous time level.

Having computed a steady state solution by (41), the task at hand is now to compute the
sensitivities. We will focus on @, the sensitivity with respect to the inflow Mach number.
Analogous results hold for the sensitivities with respect to the forebody design parameters.
Recall that given a state, the sensitivity equations are linear in the sensitivities. Therefore,
if one is interested in the steady state sensitivities, instead of (11) one may directly treat its
stationary version oF o

1 2 .
N + —07 = 0. (42)
Since (42) is linear in the components of Q’, one does not need to consider marching algo-

rithms in order to compute a steady sensitivity. One merely discretizes (42) and solves the
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resultant linear system, which has the form

A(Qh)Q,h = B(Qh)v (43)

where () denotes the discrete approximation to the steady sensitivity. The matrix A and
vector B differ from the A and B of (41) because we have discretized different differential
equations and boundary conditions. Note that A and B in (43) depend only on the steady
state @), and thus (43) is a linear system of algebraic equations for the discrete sensitivity
Q-

The cost of finding a solution of (43) is similar to that for finding the solution of (41) for a
single value of n, i.e. for a single time step. The differences in the assembly of the coefficient
matrices and right-hand-sides of (41) and (43) are minor. Thus, in theory at least, one can
obtain a steady sensitivity in the same computer time it takes to perform one time step in a
state calculation. If one wants to obtain all the sensitivities, e.g., K’ + 1 in our example, one
can do so at a cost similar to , e.g., K+1 time steps of the state calculation. This is very
cheap compared to the multiple state calculations necessary in order to compute sensitivities
through the use of difference quotients.

Although (43) is in theory no more complex than one time step in (41), we can solve
(42) by using the same iterative (or another) scheme. The simplest approach (but certainly
not the optimal approach) is to use the PARC code to solve (42) by time marching. In

particular, assume that QEL") is a solution to (41), then the system

[[+ AfAI( Szn))] (Q,)$:l+1) — [(Q/)Sln) 4 AtB’( 51”))] (44)

can be used to find (Q')SL"H) given (Q’)El"). Thus, one makes an initial guess for Q!” and
(Q1)' and then iterates (41) and (44) simultaneously. Also, the same scheme can be used

-
to compute any Qy = 5—}%, i.e.,

[+ 2eA@Q] QU = [ + atB/(@M)] . (45)

In practice, these “optimal” estimates of speed up are rarely achieved. Moreover, as
noted above, it is important to note that finite difference (FD) and sensitivity equation (SE)
methods do not necessarily produce the same results. Since the ultimate goal is to find useful
and cheap gradients for optimization, the most important issue is whether or not the SE
method combined with an optimization algorithm produces a convergent optimal design as
fast as possible. We have tested this scheme on the forebody design problem and the next

section contains a summary of these results.
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6 An Optimal Design Example

In order to illustrate the SE method and to test its use in an optimization problem, we used
the PARC code as described above to compute sensitivities and the used these sensitivities
in a BFGS/Trust Region scheme to find an optimal shortened forebody simulator. As shown
in Figure 2.2, data was generated by solving the Euler equations over the long forebody at
a Mach number of 2.0. The objective is to find a forebody simulator with length one half of
the long forebody and such that the resulting flow matches the data as well as possible, 1.e.
minimizes J along the outflow boundary.

The shortened forebody was parameterized by a Bezier curve using two parameters.
Thus, there are three design parameters p = (Mg, P, P2). The algorithm used in this
numerical experiment was based on using the PARC code to simnltaneously march to the
steady state solutions of the flow and sensitivity equations. We made no attempt to optimize
the algorithm since the main goal was to test for convergence.

The design algorithm proceeds as follows. First, an initial guess for the optimal design is
made, i.e., we select a p° = ((Mg)" , PP, P.f). A good selection of initial parameters can be
made knowing the operating conditions of the aircraft and some rough guess of the shape
from the aircraft forebody. In our example, we chose M as the inlet Mach number from
the computation which generated our data. The initial guess for the parameters were those
used to generate the long forebody (although corresponding to different x-locations). These
parameters, p°, are used to generate a grid, the inflow and forebody boundary conditions
for both the flow (1) and sensitivity equations ((11) and (23)) and an initial guess for both

'ELO) and (B%Q)io) In our example, a rough guess for the flow field QSLO) uses the constant
inflow boundary condition throughout the flow domain. Likewise, the initial guess for (Q')ﬁlo)
is taken as the inflow boundary conditions (given in equation (18)) throughout the flow
domain. The initial guess for (Qk)glo) is initially taken as zero (except on the forebody). The
systems (41), (44) and (45) are then solved simultaneously (in our case the left hand side
matrix is the same for (41) as for the sensitivity equations (44) and (45), i.e. A = A" for

1 ¥ 1 ny) -
the updated QELI), (Q’)Sl” (%)( : and <§%)i ). The updated Qg) is then used to formulate

h
(41), (44) and (45) and solve for (Qu)"*1 and (%Q)f”H)

. . . . n+1 N¢
desired convergence is achieved. In our example, the residuals, AQ, = [ i o QSL )] were

Then one iterates until the

converged to approximately 107" (in 800 time steps). The outflow data @), and (:%Q) , are
then used to compute J(p°) and VI (p°).

The optimization algorithm consisted of a BFGS secant method coupled with a “hook”
step model trust region method [5]. The initial Hessian was obtained by finite differences

on V.7 (p). The function and gradient information needed by the optimization algorithm is

13



obtained by calling the modified PARC code with p = p.

This algorithin was tested for the case where the forebody simulator was allowed to have
the full length of the body generating the data. In this case the optimization algorithm
produced exact data fits, i.e. J(p*) = 0 and it recovered the parameters used to generate
the data. However, the more realistic test (constraining the length of the forebody simulator)
also produced a convergent design and reduced the cost functional significantly.

Figure 6.1 shows the flow field over the long forebody. Observe, that there is a shock in
the flow. As noted in [2], shocks can cause difficulties if one is not careful in the selection of
an appropriate numerical scheme. High order schemes can produce (numerically generated)
local minimum that can cause the optimization loop to fail. This problem is avoided here
because the numerical viscosity in PARC (required for stability) is sufficient to “smooth”
the cost functional (see [2] for details).

Figure 6.2 shows the shape and flow field of the optimal shortened forebody. This design
was obtained after 12 iterations of the optimization loop. Figures 6.3-6.6 show the 1, 279,
374 5t and 12* iterations for each of the flow variables. The initial guess for the parameters
were

0 = ((M(‘f)o,Pl,Pz) —~ (2.0,0.10,0.15)

and

J(°) = 3.2339.
The “converged” optimal parameters are
p* = p'* = (2.020,0.294,0.156)

with

T(p") = 0.2229.
Observe that the cost function was decreased by more than 93%. Figures 6.7-6.10 show a
comparison of the flow fields for the optimal shortened forebody simulator and the data. The
optimization loops converged rapidly. For example, J(p*) = 0.2334 and J(p®) = 0.2289.
This is due to the fact that the shock location was found quickly.

Note that although the flows are close, there is a significant error near the forebody. This
can also be seen in the plots in Figures 6.11-6.14. It is worthwhile to note that the match
1s good considering the fact the shortened forebody is constrained to be one half the length
of the “real” forebody and only two Bezier parameters are used to model T'(:). It is also
important to note that the shock is captured by the optimal design. In particular, observe
in Figures 6.3-6.6 how the optimization algorithm “shapes” the shortened forebody so that
the optimal shape has a blunt nose. This is necessary in order to generate the correct shock

location at the outflow.
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7 Conclusions

The numerical experiment above illustrates that the SE method can produce sensitivities
suitable for optimization based design. There are a number of interesting theoretical issues
that need to be addressed in order to analyze the convergence of this approach. Moreover,
one should investigate “fast solvers” for the sensitivity equations (multi-grid, etc.) as well as
develop numerical schemes that are not only fast, but produces consistent derivatives when
possible.

FFinally, we note that we have conducted a number of timing tests which compute sen-
sitivities to compare the SE method with the finite difference method. In particular, we
observed that for the problem above (with three design parameters), the SE method needed
only 58% of the CPU time required by finite differencing. When twenty design parameters
were nsed, the SE method produced these sensitivities in about 38% of the time required by
finite diffecrencing. These early numerical results indicate that considerable computational

savings may be possible if one extends and refines the basic SE method presented here.
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